Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se2 solar cells with ZnS(O,OH) buffer layer

Identifieur interne : 000151 ( Main/Repository ); précédent : 000150; suivant : 000152

Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se2 solar cells with ZnS(O,OH) buffer layer

Auteurs : RBID : Pascal:14-0026989

Descripteurs français

English descriptors

Abstract

The impacts of air annealing, light soaking (LS), and heat-light soaking (HLS) on cell performances were investigated for ZnS(O,OH)/Cu(In,Ga)Se2 (CIGS) thin-film solar cells. It was found that the HLS post-treatment, a combination of LS and air annealing at 130 °C, is the most effective process for improving the cell performances of ZnS(O,OH)/CIGS devices. The best solar cell yielded a total area efficiency of 18.4% after the HLS post-treatment. X-ray photoelectron spectroscopy showed that the improved cell performance was attributable to the decreased S/(S + O) atomic ratio, not only in the surface region but also the interface region between the ZnS(O,OH) and CIGS layers, implying the shift to an adequate conduction-band offset at the ZnS(O,OH)/CIGS interface.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0026989

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se
<sub>2</sub>
solar cells with ZnS(O,OH) buffer layer</title>
<author>
<name sortKey="Kobayashi, Taizo" uniqKey="Kobayashi T">Taizo Kobayashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe</s1>
<s2>Sagamihara, Kanagawa 229-8558</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sagamihara, Kanagawa 229-8558</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yamaguchi, Hiroshi" uniqKey="Yamaguchi H">Hiroshi Yamaguchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe</s1>
<s2>Sagamihara, Kanagawa 229-8558</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sagamihara, Kanagawa 229-8558</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nakada, Tokio" uniqKey="Nakada T">Tokio Nakada</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe</s1>
<s2>Sagamihara, Kanagawa 229-8558</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sagamihara, Kanagawa 229-8558</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0026989</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0026989 INIST</idno>
<idno type="RBID">Pascal:14-0026989</idno>
<idno type="wicri:Area/Main/Corpus">000263</idno>
<idno type="wicri:Area/Main/Repository">000151</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Band offset</term>
<term>Buffer layer</term>
<term>Conduction band</term>
<term>Copper selenides</term>
<term>Gallium selenides</term>
<term>Illumination</term>
<term>Indium selenides</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>Thin film cell</term>
<term>X-ray photoelectron spectra</term>
<term>Zinc oxide</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Eclairement</term>
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Couche tampon</term>
<term>Recuit</term>
<term>Cellule couche mince</term>
<term>Spectre photoélectron RX</term>
<term>Bande conduction</term>
<term>Discontinuité bande</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Sulfure de zinc</term>
<term>Oxyde de zinc</term>
<term>Cu(In,Ga)Se2</term>
<term>ZnS</term>
<term>ZnO</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The impacts of air annealing, light soaking (LS), and heat-light soaking (HLS) on cell performances were investigated for ZnS(O,OH)/Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin-film solar cells. It was found that the HLS post-treatment, a combination of LS and air annealing at 130 °C, is the most effective process for improving the cell performances of ZnS(O,OH)/CIGS devices. The best solar cell yielded a total area efficiency of 18.4% after the HLS post-treatment. X-ray photoelectron spectroscopy showed that the improved cell performance was attributable to the decreased S/(S + O) atomic ratio, not only in the surface region but also the interface region between the ZnS(O,OH) and CIGS layers, implying the shift to an adequate conduction-band offset at the ZnS(O,OH)/CIGS interface.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se
<sub>2</sub>
solar cells with ZnS(O,OH) buffer layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOBAYASHI (Taizo)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YAMAGUCHI (Hiroshi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NAKADA (Tokio)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe</s1>
<s2>Sagamihara, Kanagawa 229-8558</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>115-121</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500724620150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0026989</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CC</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The impacts of air annealing, light soaking (LS), and heat-light soaking (HLS) on cell performances were investigated for ZnS(O,OH)/Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin-film solar cells. It was found that the HLS post-treatment, a combination of LS and air annealing at 130 °C, is the most effective process for improving the cell performances of ZnS(O,OH)/CIGS devices. The best solar cell yielded a total area efficiency of 18.4% after the HLS post-treatment. X-ray photoelectron spectroscopy showed that the improved cell performance was attributable to the decreased S/(S + O) atomic ratio, not only in the surface region but also the interface region between the ZnS(O,OH) and CIGS layers, implying the shift to an adequate conduction-band offset at the ZnS(O,OH)/CIGS interface.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Bande conduction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Conduction band</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Banda conducción</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Discontinuité bande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Band offset</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Discontinuidad banda</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0026989
   |texte=   Effects of combined heat and light soaking on device performance of Cu(In,Ga)Se2 solar cells with ZnS(O,OH) buffer layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024